R&D Project Streams offered by CPRI

Sl.	A was of Dagaawah
No.	Area of Research
	Branch: Electrical Engineering
1	Modelling Voltage Flicker for EV Charges
2	i. Solid State Transformersii. Pressure Measurements due to Internal Arc Fault Test on Electrical Equipment
3	 i. Electrical Machines and Drives ii. HV Impulse Test in Transformer and Switchgear
4	i. Power Quality Improvementsii. Power Systemsiii. Distributed Generationsiv. Temperature Rise of Transformers
5	Evaluation of Corona Discharges on Silicone Insulating Materials for Outdoor HV Insulation
6	 i. SCADA ii. Utility Automation including distribution utility automation iii. Smart Grid iv. cyber security for power sector v. communication systems and communication protocols for power sectors applications and allied areas
7	 i. SCADA ii. Power System Automation iii. AMI and Smart Metering, Smart Grid iv. Cyber Security for Power Sector v. Communication Protocols for Power Sector Applications
8	i. Power Systems Protection with Renewablesii. Power Systems Dynamics with Renewablesiii. Impact of EV on Power Systems
9	Drive Cycle Behavior of Li-ion Battery for Electric Vehicle Application
	Branch: Mechanical Engineering
10	 i. Analysis of High-Temperature Corrosion of different Boiler Tube Materials under Simulated Environmental Conditions ii. Numerical Analysis and Optimization of Turbine Blade Geometry for Low Head-High Discharge Hydro Systems
	Branch: Polymer Science & Technology / Chemical Engineering
11	Development of UV Resistant Cross-Linked Polyethylene-based Composites for High Voltage Cable Insulation
12	Preparation and Characterization of Bio-Degradable Polymers [Poly(lactic acid) (PLA) & Polycaprolactone (PCL)] and their Composites for Capacitor Application